Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.577
Filtrar
1.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656542

RESUMO

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Assuntos
Comportamento Exploratório , Hipocampo , Plasticidade Neuronal , Ratos Wistar , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo , Animais , Masculino , Plasticidade Neuronal/fisiologia , Ratos , Hipocampo/metabolismo , Hipocampo/fisiologia , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Comportamento Exploratório/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia
2.
Neural Comput ; 36(5): 781-802, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38658027

RESUMO

Variation in the strength of synapses can be quantified by measuring the anatomical properties of synapses. Quantifying precision of synaptic plasticity is fundamental to understanding information storage and retrieval in neural circuits. Synapses from the same axon onto the same dendrite have a common history of coactivation, making them ideal candidates for determining the precision of synaptic plasticity based on the similarity of their physical dimensions. Here, the precision and amount of information stored in synapse dimensions were quantified with Shannon information theory, expanding prior analysis that used signal detection theory (Bartol et al., 2015). The two methods were compared using dendritic spine head volumes in the middle of the stratum radiatum of hippocampal area CA1 as well-defined measures of synaptic strength. Information theory delineated the number of distinguishable synaptic strengths based on nonoverlapping bins of dendritic spine head volumes. Shannon entropy was applied to measure synaptic information storage capacity (SISC) and resulted in a lower bound of 4.1 bits and upper bound of 4.59 bits of information based on 24 distinguishable sizes. We further compared the distribution of distinguishable sizes and a uniform distribution using Kullback-Leibler divergence and discovered that there was a nearly uniform distribution of spine head volumes across the sizes, suggesting optimal use of the distinguishable values. Thus, SISC provides a new analytical measure that can be generalized to probe synaptic strengths and capacity for plasticity in different brain regions of different species and among animals raised in different conditions or during learning. How brain diseases and disorders affect the precision of synaptic plasticity can also be probed.


Assuntos
Teoria da Informação , Plasticidade Neuronal , Sinapses , Animais , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Espinhas Dendríticas/fisiologia , Região CA1 Hipocampal/fisiologia , Modelos Neurológicos , Armazenamento e Recuperação da Informação , Masculino , Hipocampo/fisiologia , Ratos
3.
Nat Commun ; 15(1): 2190, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467602

RESUMO

The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.


Assuntos
Hipocampo , Células Piramidais , Camundongos , Animais , Retroalimentação , Hipocampo/fisiologia , Células Piramidais/fisiologia , Neurônios , Região CA1 Hipocampal/fisiologia , Interneurônios/fisiologia , Potenciais de Ação/fisiologia
4.
J Neural Eng ; 21(2)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530299

RESUMO

Objective. The development of electrical pulse stimulations in brain, including deep brain stimulation, is promising for treating various brain diseases. However, the mechanisms of brain stimulations are not yet fully understood. Previous studies have shown that the commonly used high-frequency stimulation (HFS) can increase the firing of neurons and modulate the pattern of neuronal firing. Because the generation of neuronal firing in brain is a nonlinear process, investigating the characteristics of nonlinear dynamics induced by HFS could be helpful to reveal more mechanisms of brain stimulations. The aim of present study is to investigate the fractal properties in the neuronal firing generated by HFS.Approach. HFS pulse sequences with a constant frequency 100 Hz were applied in the afferent fiber tracts of rat hippocampal CA1 region. Unit spikes of both the pyramidal cells and the interneurons in the downstream area of stimulations were recorded. Two fractal indexes-the Fano factor and Hurst exponent were calculated to evaluate the changes of long-range temporal correlations (LRTCs), a typical characteristic of fractal process, in spike sequences of neuronal firing.Mainresults. Neuronal firing at both baseline and during HFS exhibited LRTCs over multiple time scales. In addition, the LRTCs significantly increased during HFS, which was confirmed by simulation data of both randomly shuffled sequences and surrogate sequences.Conclusion. The purely periodic stimulation of HFS pulses, a non-fractal process without LRTCs, can increase rather than decrease the LRTCs in neuronal firing.Significance. The finding provides new nonlinear mechanisms of brain stimulation and suggests that LRTCs could be a new biomarker to evaluate the nonlinear effects of HFS.


Assuntos
Hipocampo , Neurônios , Ratos , Animais , Ratos Sprague-Dawley , Neurônios/fisiologia , Hipocampo/fisiologia , Axônios/fisiologia , Região CA1 Hipocampal/fisiologia , Estimulação Elétrica/métodos
5.
Science ; 383(6690): 1478-1483, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547293

RESUMO

Experiences need to be tagged during learning for further consolidation. However, neurophysiological mechanisms that select experiences for lasting memory are not known. By combining large-scale neural recordings in mice with dimensionality reduction techniques, we observed that successive maze traversals were tracked by continuously drifting populations of neurons, providing neuronal signatures of both places visited and events encountered. When the brain state changed during reward consumption, sharp wave ripples (SPW-Rs) occurred on some trials, and their specific spike content decoded the trial blocks that surrounded them. During postexperience sleep, SPW-Rs continued to replay those trial blocks that were reactivated most frequently during waking SPW-Rs. Replay content of awake SPW-Rs may thus provide a neurophysiological tagging mechanism to select aspects of experience that are preserved and consolidated for future use.


Assuntos
Ondas Encefálicas , Região CA1 Hipocampal , Consolidação da Memória , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Consolidação da Memória/fisiologia , Aprendizagem em Labirinto , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia
6.
J Comput Neurosci ; 52(2): 125-131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470534

RESUMO

Long-term potentiation (LTP) is a synaptic mechanism involved in learning and memory. Experiments have shown that dendritic sodium spikes (Na-dSpikes) are required for LTP in the distal apical dendrites of CA1 pyramidal cells. On the other hand, LTP in perisomatic dendrites can be induced by synaptic input patterns that can be both subthreshold and suprathreshold for Na-dSpikes. It is unclear whether these results can be explained by one unifying plasticity mechanism. Here, we show in biophysically and morphologically realistic compartmental models of the CA1 pyramidal cell that these forms of LTP can be fully accounted for by a simple plasticity rule. We call it the voltage-based Event-Timing-Dependent Plasticity (ETDP) rule. The presynaptic event is the presynaptic spike or release of glutamate. The postsynaptic event is the local depolarization that exceeds a certain plasticity threshold. Our model reproduced the experimentally observed LTP in a variety of protocols, including local pharmacological inhibition of dendritic spikes by tetrodotoxin (TTX). In summary, we have provided a validation of the voltage-based ETDP, suggesting that this simple plasticity rule can be used to model even complex spatiotemporal patterns of long-term synaptic plasticity in neuronal dendrites.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal , Dendritos , Potenciação de Longa Duração , Modelos Neurológicos , Células Piramidais , Dendritos/fisiologia , Potenciação de Longa Duração/fisiologia , Células Piramidais/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Potenciais de Ação/fisiologia , Plasticidade Neuronal/fisiologia , Tetrodotoxina/farmacologia , Simulação por Computador
7.
Nature ; 628(8006): 145-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538785

RESUMO

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Assuntos
Região CA1 Hipocampal , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Inflamação , Memória , Receptor Toll-Like 9 , Animais , Feminino , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Região CA1 Hipocampal/fisiologia , Centrossomo/metabolismo , Disfunção Cognitiva/genética , Condicionamento Clássico , Matriz Extracelular/metabolismo , Medo , Instabilidade Genômica/genética , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Memória/fisiologia , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Neurônios/metabolismo , Neurônios/patologia , Membrana Nuclear/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
8.
Science ; 383(6686): 967-970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422134

RESUMO

Endocannabinoid (eCB)-mediated suppression of inhibitory synapses has been hypothesized, but this has not yet been demonstrated to occur in vivo because of the difficulty in tracking eCB dynamics and synaptic plasticity during behavior. In mice navigating a linear track, we observed location-specific eCB signaling in hippocampal CA1 place cells, and this was detected both in the postsynaptic membrane and the presynaptic inhibitory axons. All-optical in vivo investigation of synaptic responses revealed that postsynaptic depolarization was followed by a suppression of inhibitory synaptic potentials. Furthermore, interneuron-specific cannabinoid receptor deletion altered place cell tuning. Therefore, rapid, postsynaptic, activity-dependent eCB signaling modulates inhibitory synapses on a timescale of seconds during behavior.


Assuntos
Região CA1 Hipocampal , Endocanabinoides , Potenciais Pós-Sinápticos Inibidores , Sinapses , Transmissão Sináptica , Animais , Camundongos , Endocanabinoides/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Sinalização do Cálcio , Região CA1 Hipocampal/fisiologia , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/fisiologia , Masculino , Feminino , Camundongos Knockout
9.
Curr Biol ; 34(4): 841-854.e4, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38325376

RESUMO

Sequential neural dynamics encoded by time cells play a crucial role in hippocampal function. However, the role of hippocampal sequential neural dynamics in associative learning is an open question. We used two-photon Ca2+ imaging of dorsal CA1 (dCA1) neurons in the stratum pyramidale (SP) in head-fixed mice performing a go-no go associative learning task to investigate how odor valence is temporally encoded in this area of the brain. We found that SP cells responded differentially to the rewarded or unrewarded odor. The stimuli were decoded accurately from the activity of the neuronal ensemble, and accuracy increased substantially as the animal learned to differentiate the stimuli. Decoding the stimulus from individual SP cells responding differentially revealed that decision-making took place at discrete times after stimulus presentation. Lick prediction decoded from the ensemble activity of cells in dCA1 correlated linearly with lick behavior. Our findings indicate that sequential activity of SP cells in dCA1 constitutes a temporal memory map used for decision-making in associative learning. VIDEO ABSTRACT.


Assuntos
Região CA1 Hipocampal , Hipocampo , Camundongos , Animais , Região CA1 Hipocampal/fisiologia , Neurônios/fisiologia , Aprendizagem , Condicionamento Clássico
10.
Science ; 383(6682): 551-558, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301006

RESUMO

Hippocampal theta-phase precession is involved in spatiotemporal coding and in generating multineural spike sequences, but how precession originates remains unresolved. To determine whether precession can be generated directly in hippocampal area CA1 and disambiguate multiple competing mechanisms, we used closed-loop optogenetics to impose artificial place fields in pyramidal cells of mice running on a linear track. More than one-third of the CA1 artificial fields exhibited synthetic precession that persisted for a full theta cycle. By contrast, artificial fields in the parietal cortex did not exhibit synthetic precession. These findings are incompatible with precession models based on inheritance, dual-input, spreading activation, inhibition-excitation summation, or somato-dendritic competition. Thus, a precession generator resides locally within CA1.


Assuntos
Região CA1 Hipocampal , Células Piramidais , Ritmo Teta , Animais , Camundongos , Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Modelos Neurológicos , Células Piramidais/fisiologia , Ritmo Teta/fisiologia
11.
Nat Commun ; 15(1): 1849, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418832

RESUMO

The hippocampus and entorhinal cortex exhibit rich oscillatory patterns critical for cognitive functions. In the hippocampal region CA1, specific gamma-frequency oscillations, timed at different phases of the ongoing theta rhythm, are hypothesized to facilitate the integration of information from varied sources and contribute to distinct cognitive processes. Here, we show that gamma elements -a multidimensional characterization of transient gamma oscillatory episodes- occur at any frequency or phase relative to the ongoing theta rhythm across all CA1 layers in male mice. Despite their low power and stochastic-like nature, individual gamma elements still carry behavior-related information and computational modeling suggests that they reflect neuronal firing. Our findings challenge the idea of rigid gamma sub-bands, showing that behavior shapes ensembles of irregular gamma elements that evolve with learning and depend on hippocampal layers. Widespread gamma diversity, beyond randomness, may thus reflect complexity, likely functional but invisible to classic average-based analyses.


Assuntos
Hipocampo , Neurônios , Masculino , Camundongos , Animais , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Entorrinal/fisiologia , Ritmo Teta/fisiologia , Simulação por Computador , Ritmo Gama/fisiologia , Região CA1 Hipocampal/fisiologia
12.
Neurosci Bull ; 40(2): 201-217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37440103

RESUMO

As a main structure of the limbic system, the hippocampus plays a critical role in pain perception and chronicity. The ventral hippocampal CA1 (vCA1) is closely associated with negative emotions such as anxiety, stress, and fear, yet how vCA1 neurons encode nociceptive information remains unclear. Using in vivo electrophysiological recording, we characterized vCA1 pyramidal neuron subpopulations that exhibited inhibitory or excitatory responses to plantar stimuli and were implicated in encoding stimuli modalities in naïve rats. Functional heterogeneity of the vCA1 pyramidal neurons was further identified in neuropathic pain conditions: the proportion and magnitude of the inhibitory response neurons paralleled mechanical allodynia and contributed to the confounded encoding of innocuous and noxious stimuli, whereas the excitatory response neurons were still instrumental in the discrimination of stimulus properties. Increased theta power and theta-spike coupling in vCA1 correlated with nociceptive behaviors. Optogenetic inhibition of vCA1 pyramidal neurons induced mechanical allodynia in naïve rats, whereas chemogenetic reversal of the overall suppressed vCA1 activity had analgesic effects in rats with neuropathic pain. These results provide direct evidence for the representations of nociceptive information in vCA1.


Assuntos
Região CA1 Hipocampal , Neuralgia , Ratos , Animais , Região CA1 Hipocampal/fisiologia , Hiperalgesia , Nociceptividade , Vias Neurais/fisiologia , Hipocampo/fisiologia , Células Piramidais/fisiologia
13.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123997

RESUMO

Neurons typically generate action potentials at their axon initial segment based on the integration of synaptic inputs. In many neurons, the axon extends from the soma, equally weighting dendritic inputs. A notable exception is found in a subset of hippocampal pyramidal cells where the axon emerges from a basal dendrite. This structure allows these axon-carrying dendrites (AcDs) a privileged input route. We found that in male mice, such cells in the CA1 region receive stronger excitatory input from the contralateral CA3, compared with those with somatic axon origins. This is supported by a higher count of putative synapses from contralateral CA3 on the AcD. These findings, combined with prior observations of their distinct role in sharp-wave ripple firing, suggest a key role of this neuron subset in coordinating bi-hemispheric hippocampal activity during memory-centric oscillations.


Assuntos
Hipocampo , Células Piramidais , Masculino , Camundongos , Animais , Células Piramidais/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Dendritos/fisiologia , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Região CA1 Hipocampal/fisiologia
14.
J Neurosci ; 44(5)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38124004

RESUMO

The impact of dopamine on synaptic plasticity and cognitive function following seizure is not well understood. Here, using optogenetics in the freely behaving animal, we examined exploratory behavior and short-term memory in control and kindled male mice during tonic stimulation of dopaminergic neurons within the ventral tegmental area (VTA). Furthermore, using field potential recording, we compared the effect of dopamine on synaptic plasticity in stratum radiatum and stratum oriens layers of both ventral and dorsal hippocampal CA1 regions, and again in both control and kindled male mice. Our results demonstrate that tonic stimulation of VTA dopaminergic neurons enhances novelty-driven exploration and short-term spatial memory in kindled mice, essentially rescuing the seizure-induced cognitive impairment. In addition, we found that dopamine has a dual effect on LTP in control versus kindled mice, such that application of dopamine prevented LTP induction in slices from control mice, but rescued LTP in slices taken from the kindled animal. Taken together, our results highlight the potential for dopaminergic modulation in improving synaptic plasticity and cognitive function following seizure.


Assuntos
Dopamina , Hipocampo , Camundongos , Masculino , Animais , Dopamina/farmacologia , Hipocampo/fisiologia , Região CA1 Hipocampal/fisiologia , Convulsões , Cognição , Potenciação de Longa Duração/fisiologia
15.
Sci Rep ; 13(1): 21763, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066014

RESUMO

Hippocampal Place Cells (PCs) are pyramidal neurons showing spatially localized firing when an animal gets into a specific area within an environment. Because of their obvious and clear relation with specific cognitive functions, Place Cells operations and modulations are intensely studied experimentally. However, although a lot of data have been gathered since their discovery, the cellular processes that interplay to turn a hippocampal pyramidal neuron into a Place Cell are still not completely understood. Here, we used a morphologically and biophysically detailed computational model of a CA1 pyramidal neuron to show how, and under which conditions, it can turn into a neuron coding for a specific cue location, through the self-organization of its synaptic inputs in response to external signals targeting different dendritic layers. Our results show that the model is consistent with experimental findings demonstrating PCs stability within the same spatial context over different trajectories, environment rotations, and place field remapping to adapt to changes in the environment. To date, this is the only biophysically and morphologically accurate cellular model of PCs formation, which can be directly used in physiologically accurate microcircuits and large-scale model networks to study cognitive functions and dysfunctions at cellular level.


Assuntos
Células de Lugar , Animais , Neurônios/fisiologia , Células Piramidais/fisiologia , Hipocampo/fisiologia , Sinapses/fisiologia , Região CA1 Hipocampal/fisiologia , Potenciais de Ação/fisiologia
16.
Nat Commun ; 14(1): 8312, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097535

RESUMO

The consolidation of recent memories depends on memory replays, also called ripples, generated within the hippocampus during slow-wave sleep, and whose inactivation leads to memory impairment. For now, the mobilisation, localisation and importance of synaptic plasticity events associated to ripples are largely unknown. To tackle this question, we used cell surface AMPAR immobilisation to block post-synaptic LTP within the hippocampal region of male mice during a spatial memory task, and show that: 1- hippocampal synaptic plasticity is engaged during consolidation, but is dispensable during encoding or retrieval. 2- Plasticity blockade during sleep results in apparent forgetting of the encoded rule. 3- In vivo ripple recordings show a strong effect of AMPAR immobilisation when a rule has been recently encoded. 4- In situ investigation suggests that plasticity at CA3-CA3 recurrent synapses supports ripple generation. We thus propose that post-synaptic AMPAR mobility at CA3 recurrent synapses is necessary for ripple-dependent rule consolidation.


Assuntos
Consolidação da Memória , Camundongos , Masculino , Animais , Consolidação da Memória/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Sono/fisiologia , Memória Espacial , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia
17.
Curr Biol ; 33(24): 5368-5380.e5, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37992719

RESUMO

Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, which allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here, we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal ventral CA1 (vCA1) region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components, respectively. Finally, we identify a synaptic plasticity mechanism mediated by postsynaptic density protein 95 (PSD-95), which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.


Assuntos
Região CA1 Hipocampal , Rememoração Mental , Região CA1 Hipocampal/fisiologia , Rememoração Mental/fisiologia , Aprendizagem , Plasticidade Neuronal/fisiologia , Tonsila do Cerebelo
18.
Nat Commun ; 14(1): 6841, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891171

RESUMO

Throughout life animals inevitably encounter unforeseen threatening events. Activity of principal cells in the hippocampus is tuned for locations and for salient stimuli in the animals' environment thus forming a map known to be pivotal for guiding behavior. Here, we explored if a code of threatening stimuli exists in the CA1 region of the dorsal hippocampus of mice by recording neuronal response to aversive stimuli delivered at changing locations. We have discovered a rapidly emerging, location independent response to innoxious aversive stimuli composed of the coordinated activation of subgroups of pyramidal cells and connected interneurons. Activated pyramidal cells had higher basal firing rate, more probably participated in ripples, targeted more interneurons than place cells and many of them lacked place fields. We also detected aversive stimulus-coupled assemblies dominated by the activated neurons. Notably, these assemblies could be observed even before the delivery of the first aversive event. Finally, we uncovered the systematic shift of the spatial code from the aversive to, surprisingly, the reward location during the fearful stimulus. Our results uncovered components of the dorsal CA1 circuit possibly key for re-sculpting the spatial map in response to abrupt aversive events.


Assuntos
Hipocampo , Neurônios , Camundongos , Animais , Hipocampo/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Interneurônios/fisiologia , Medo/fisiologia , Região CA1 Hipocampal/fisiologia
19.
Sci Rep ; 13(1): 18005, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865669

RESUMO

Glyphosate, a herbicide marketed as Roundup, is widely used but there are concerns this exposure could impair cognitive function. In the CA1 region of rat hippocampal slices, we investigated whether glyphosate alters synaptic transmission and long-term potentiation (LTP), a cellular model of learning and memory. Our hypothesis is that glyphosate alters neuronal function and impairs LTP induction via activation of pro-inflammatory processes. Roundup depressed excitatory synaptic potentials(EPSPs) in a dose-dependent manner with complete suppression at 2000 mg/L. At concentrations ≤ 20 mg/L Roundup did not affect basal transmission, but 4 mg/L Roundup administered for 30 min inhibited LTP induction. Acute administration of 10-100 µM glyphosate also inhibited LTP induction. Minocycline, an inhibitor of microglial activation, and TAK-242, an inhibitor of toll-like receptor 4 (TLR4), both overcame the inhibitory effects of 100 µM glyphosate. Similarly, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS), a different TLR4 antagonist, overcame the inhibitory effects. In addition, ISRIB (integrated stress response inhibitor) and quercetin, an inhibitor of endoplasmic reticulum stress, overcame the inhibitory effects. We also observed that in vivo glyphosate injection (16.9 mg/kg i.p.) impaired one-trial inhibitory avoidance learning. This learning deficit was overcome by TAK-242. These observations indicate that glyphosate can impair cognitive function through pro-inflammatory signaling in microglia.


Assuntos
Potenciação de Longa Duração , Receptor 4 Toll-Like , Ratos , Animais , Potenciação de Longa Duração/fisiologia , Hipocampo/fisiologia , Aprendizagem da Esquiva/fisiologia , Região CA1 Hipocampal/fisiologia
20.
Nat Commun ; 14(1): 6159, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816713

RESUMO

Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.


Assuntos
Hipocampo , Neurônios , Hipocampo/fisiologia , Neurônios/metabolismo , Córtex Entorrinal/fisiologia , Ritmo Teta/fisiologia , Parvalbuminas/metabolismo , Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...